• Home
  • Announcements & Surveys
  • About
  • Contact

Probabilistic World

  • Probability Theory & Statistics
    • Fundamental Concepts
    • Measures
    • Probability Distributions
    • Bayes’ Theorem
  • General Math Topics
    • Number Theory
    • Algebra
    • Discrete Mathematics
      • Combinatorics
      • Cryptography & Cryptanalysis
  • Applications

Occam’s Razor: A Probabilistic View

Posted on March 13, 2018 Written by The Cthaeh 7 Comments

The word simple written by blocks of "complex" words

“Simple explanations are better than complex explanations.” — have you heard this statement before? It’s the most simplified version of the principle called Occam’s razor. More specifically, the principle says:

A simple theory is always preferable to a complex theory, if the complex theory doesn’t offer a better explanation.

Does it make sense? If it’s not immediately convincing, that’s okay. There have been debates around Occam’s razor’s validity and applicability for a very long time.

In this post, I’m going to give an intuitive introduction to the principle and its justification. I’m going to show that, despite historical debates, there is a sense in which Occam’s razor is always valid. In fact, I’m going to try to convince you this principle is so true that it doesn’t even need to be stated on its own.

[Read more…]

Filed Under: Applications, Bayes' Theorem Tagged With: Causality

When Dependence Between Events Is Conditional

Posted on November 26, 2016 Written by The Cthaeh 9 Comments

A spider building a web, outdoors.

In this post, I want to talk about conditional dependence and independence between events. This is an important concept in probability theory and a central concept for graphical models.

In my two-part post on Bayesian belief networks, I introduced an important type of graphical models. You can read Part 1 and Part 2 by following these links.

This is actually an informal continuation of the two Bayesian networks posts. Even though I initially wanted to include it at the end of Part 2, I decided it’s an important enough topic that deserves its own space.

[Read more…]

Filed Under: Bayes' Theorem Tagged With: Bayesian network, Causality, Conditional probability, Sample space

What Are Bayesian Belief Networks? (Part 2)

Posted on November 20, 2016 Written by The Cthaeh 11 Comments

Droplets of different sizes (on a spider web) connected to each other - a metaphor for Bayesian belief networks

In the first part of this post, I gave the basic intuition behind Bayesian belief networks (or just Bayesian networks) — what they are, what they’re used for, and how information is exchanged between their nodes.

In this post, I’m going to show the math underlying everything I talked about in the previous one. It’s going to be a bit more technical, but I’m going to try to give the intuition behind the relevant equations.

If you stick to the end, I promise you’ll get a much deeper understanding of Bayesian networks. To the point of actually being able to use them for real-world calculations.

[Read more…]

Filed Under: Bayes' Theorem Tagged With: Bayesian network, Causality, Conditional probability, Sample space

What Are Bayesian Belief Networks? (Part 1)

Posted on November 3, 2016 Written by The Cthaeh 22 Comments

Droplets of different sizes connected to each other - a metaphor for Bayesian belief networksIn my introductory Bayes’ theorem post, I used a “rainy day” example to show how information about one event can change the probability of another. In particular, how seeing rainy weather patterns (like dark clouds) increases the probability that it will rain later the same day.

Bayesian belief networks, or just Bayesian networks, are a natural generalization of these kinds of inferences to multiple events or random processes that depend on each other.

This is going to be the first of 2 posts specifically dedicated to this topic. Here I’m going to give the general intuition for what Bayesian networks are and how they are used as causal models of the real world. I’m also going to give the general intuition of how information propagates within a Bayesian network.

[Read more…]

Filed Under: Bayes' Theorem Tagged With: Bayesian network, Causality, Conditional probability

Frequentist and Bayesian Approaches in Statistics

Posted on June 16, 2016 Written by The Cthaeh 53 Comments

Dennis Lindley vs. Ronald Fisher

What is statistics about?

Well, imagine you obtained some data from a particular collection of things. It could be the heights of individuals within a group of people, the weights of cats in a clowder, the number of petals in a bouquet of flowers, and so on.

Such collections are called samples and you can use the obtained data in two ways. The most straightforward thing you can do is give a detailed description of the sample. For example, you can calculate some of its useful properties:

  • The average of the sample
  • The spread of the sample (how much individual data points differ from each other), also known as its variance
  • The number or percentage of individuals who score above or below some constant (for example, the number of people whose height is above 180 cm)
  • Etc.

You only use these quantities to summarize the sample. And the discipline that deals with such calculations is descriptive statistics.

But what if you wanted to learn something more general than just the properties of the sample? What if you wanted to find a pattern that doesn’t just hold for this particular sample, but also for the population from which you took the sample? The branch of statistics that deals with such generalizations is inferential statistics and is the main focus of this post.

The two general “philosophies” in inferential statistics are frequentist inference and Bayesian inference. I’m going to highlight  the main differences between them — in the types of questions they formulate, as well as in the way they go about answering them.

But first, let’s start with a brief introduction to inferential statistics.

[Read more…]

Filed Under: Bayes' Theorem, Fundamental Concepts, Probability Theory & Statistics Tagged With: Confidence interval, Null hypothesis, P-value, Parameter estimation

Coin Bias Calculation Using Bayes’ Theorem

Posted on March 21, 2016 Written by The Cthaeh 23 Comments

An ancient Greek coin with an unusual shape and lopsidedness

Why do people flip coins to resolve disputes? It usually happens when neither of two sides wants to compromise with the other about a particular decision. They choose the coin to be the unbiased agent that decides whose way things are going to go. The coin is an unbiased agent because the two possible outcomes of the flip (heads and tails) are equally likely to occur.

[Read more…]

Filed Under: Applications, Bayes' Theorem Tagged With: Coin flip, Parameter estimation, Python

  • 1
  • 2
  • Next Page »

Sign Up For The Probabilistic World Newsletter

Enter your email below to receive updates and be notified about new posts.

Follow Probabilistic World

  • Facebook
  • Twitter
  • YouTube

Recent posts

  • Numeral Systems: Everything You Need to Know
  • Introduction to Number Theory: The Basic Concepts
  • Cryptography During World War I
  • Mean and Variance of Discrete Uniform Distributions
  • Euclidean Division: Integer Division with Remainders

Probabilistic World